104 research outputs found

    Dates, Diet, and Dismemberment: Evidence from the Coldrum Megalithic Monument, Kent

    Get PDF
    We present radiocarbon dates, stable isotope data, and osteological analysis of the remains of a minimum of 17 individuals deposited in the western part of the burial chamber at Coldrum, Kent. This is one of the Medway group of megalithic monuments – sites with shared architectural motifs and no very close parallels elsewhere in Britain – whose location has been seen as important in terms of the origins of Neolithic material culture and practices in Britain. The osteological analysis identified the largest assemblage of cut-marked human bone yet reported from a British early Neolithic chambered tomb; these modifications were probably undertaken as part of burial practices. The stable isotope dataset shows very enriched & 15N values, the causes of which are not entirely clear, but could include consumption of freshwater fish resources. Bayesian statistical modelling of the radiocarbon dates demonstrates that Coldrum is an early example of a British Neolithic burial monument, though the tomb was perhaps not part of the earliest Neolithic evidence in the Greater Thames Estuary. The site was probably initiated after the first appearance of other early Neolithic regional phenomena including an inhumation burial, early Neolithic pottery and a characteristic early Neolithic post-and-slot structure, and perhaps of Neolithic flint extraction in the Sussex mines. Coldrum is the only site in the Medway monument group to have samples which have been radiocarbon dated, and is important both for regional studies of the early Neolithic and wider narratives of the processes, timing, and tempo of Neolithisation across Britai

    Trans youth, science and art: creating (trans) gendered space

    Get PDF
    This article is based on empirical research which was undertaken as part of the Sci:dentity project funded by the Wellcome Trust. Sci:dentity was a year-long participatory arts project which ran between March 2006 and March 2007. The project offered 18 young transgendered and transsexual people, aged between 14 and 22, an opportunity to come together to explore the science of sex and gender through art. This article focuses on four creative workshops which ran over two months, being the ‘creative engagement’ phase of the project. It offers an analysis of the transgendered space created which was constituted through the logics of recognition, creativity and pedagogy. Following this, the article explores the ways in which these transgendered and transsexual young people navigate gendered practices, and the gendered spaces these practices constitute, in their everyday lives shaped by gendered and sexual normativities. It goes on to consider the significance of trans virtual and physical cultural spaces for the development of trans young peoples' ontological security and their navigations and negotiations of a gendered social world

    The multiplicity of performance management systems:Heterogeneity in multinational corporations and management sense-making

    Get PDF
    This field study examines the workings of multiple performance measurement systems (PMSs) used within and between a division and Headquarters (HQ) of a large European corporation. We explore how multiple PMSs arose within the multinational corporation. We first provide a first‐order analysis which explains how managers make sense of the multiplicity and show how an organization's PMSs may be subject to competing processes for control that result in varied systems, all seemingly functioning, but with different rationales and effects. We then provide a second‐order analysis based on a sense‐making perspective that highlights the importance of retrospective understandings of the organization's history and the importance of various legitimacy expectations to different parts of the multinational. Finally, we emphasize the role of social skill in sense‐making that enables the persistence of multiple systems and the absence of overt tensions and conflict within organizations

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

    Get PDF
    Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF
    corecore